Effective matrix-free preconditioning for the augmented immersed interface method

نویسندگان

  • Jianlin Xia
  • Zhilin Li
  • Xin Ye
چکیده

We present effective and efficient matrix-free preconditioning techniques for the augmented immersed interface method (AIIM). AIIM has been developed recently and is shown to be very effective for interface problems and problems on irregular domains. GMRES is often used to solve for the augmented variable(s) associated with a Schur complement A in AIIM that is defined along the interface or the irregular boundary. The efficiency of AIIM relies on how quickly the system for A can be solved. For some applications, there are substantial difficulties involved, such as the slow convergence of GMRES (particularly for free boundary and moving interface problems), and the inconvenience in finding a preconditioner (due to the situation that only the products of A and vectors are available). Here, we propose matrix-free structured preconditioning techniques for AIIM via adaptive randomized sampling, using only the products of A and vectors to construct a hierarchically semiseparable matrix approximation to A. Several improvements over existing schemes are shown so as to enhance the efficiency and also avoid potential instability. The significance of the preconditioners includes: (1) they do not require the entries of A or the multiplication of AT with vectors; (2) constructing the preconditioners needs only O(logN) matrix-vector products and O(N) storage, where N is the size of A; (3) applying the preconditioners needs only O(N) flops; (4) they are very flexible and do not require any a priori knowledge of the structure of A. The preconditioners are observed to significantly accelerate the convergence of GMRES, with heuristical justifications of the effectiveness. Comprehensive tests on several important applications are provided, such as Navier-Stokes equations on irregular domains with traction boundary conditions, interface problems in incompressible flows, mixed boundary problems, and free boundary problems. The preconditioning techniques are also useful for several other problems and methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

Analysis and Numerical Methods for Some Crack Problems

In this paper, finite difference schemes based on asymptotic analysis and the augmented immersed interface method are proposed for potential problems with an inclusion whose characteristic width is much smaller than the characteristic length in one and two dimensions. We call such a problem as a crack problem for simplicity. In the proposed methods, we use asymptotic analysis to approximate the...

متن کامل

A semi-implicit augmented IIM for Navier-Stokes equations with open and traction boundary conditions

In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open and traction boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For this type of problem, the project...

متن کامل

An immersed interface method for the vortex - in - cell algorithm †

The paper presents a two-dimensional immersed interface technique for the vortex-in-cell (VIC) method for the simulation of flows past complex geometries. The particle–mesh VIC algorithm is augmented by a local particle– particle (PP) correction term in a particle–particle particle–mesh (PPPM) context to resolve sub-grid scales incurred by the presence of the immersed interface. The PP correcti...

متن کامل

On the theory of the generalized augmented matrix preconditioning method

The present paper is devoted to an improvement of the theory of the recently proposed generalized augmented matrix preconditioning method [5]. Namely, we compute a sharp lower bound on eigenvalues of the preconditioned matrix based on the properties of the projector involved in its definition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 303  شماره 

صفحات  -

تاریخ انتشار 2015